(Your organization's name) has developed an ergonomics program to educate and train employees on the basic principles of ergonomics and proper body mechanics. This program also includes written guidelines to address musculoskeletal injuries caused by exertions, repetitive motions, or sustained postures. This would include back injuries, sprains, strains, carpal tunnel syndrome, and other cumulative trauma disorders.

COMPONENTS OF AN EFFECTIVE ERGONOMICS PROGRAM
An effective Ergonomics Program should include the following components:

1. Workplace analysis
2. Hazard prevention and control
3. Training.

The level of effort required for each will vary depending on each employer’s type of work activities and respective hazards.

Workplace Analysis
Workplace analysis is a method that provides for the identification of:

- Existing hazards and conditions.
- Operations that create hazards.
- Areas where potential hazards may develop.

Objectives of workplace analysis are to recognize, identify, and correct ergonomic hazards. The first step in implementing the workplace analysis should be a review and analysis of injury and illness records. The second step could include observation of employees performing their work tasks. Some typical risk factors may include improper lifting techniques, excessive repetition and prolonged activities, exposure to vibrations, and excessive force. The third step would be to obtain information from employees related to repetitive motion symptoms and risk factors.

Hazard Prevention and Control

Engineering controls

Engineering controls are the preferred method of control. The premise of ergonomics is to fit the job to the person rather than making the person fit the job. This can be accomplished by designing or modifying the workstation, work methods, and tools to eliminate excessive exertion and awkward postures and to reduce repetitive motion.

- Workstation Design: Workstations should be easily adjustable and either designed or selected to fit the task so they are comfortable for the worker using them.
- Design for Work Methods: Work methods should be designed to reduce static, extreme and awkward postures, repetitive motion, and excessive force.
- Tool and Handle Design: A variety of sizes should be available to achieve proper fit and reduce ergonomic risk. The appropriate tool should be used to do a specific job.

Work practices

Key elements of a good work practice program include proper work techniques, employee conditioning, inspections, feedback, and maintenance.
- Proper work techniques include training on the correct lifting procedures and correct use of ergonomically designed workstations, fixtures, and tools.
- Employee conditioning includes employees gradually being worked into a full workload as appropriate for their specific jobs. Employees reassigned to new jobs should also have a break-in training period.
- Inspections are conducted periodically to ensure safe operating procedures are being followed.
- Feedback provides a system for employees to notify management about conditions with potential ergonomic hazards. Employees will be instructed to report ergonomically related symptoms to their supervisors immediately.
- Maintenance is a preventive program for monitoring mechanical equipment and tools to ensure they are in proper working condition.

Administrative controls

Administrative controls reduce the duration, frequency, and severity of exposures to ergonomic hazards. Examples would include:
1. Reducing the total number of repetitions per hour.
2. Provide short rest periods to relieve fatigue.
3. Provide job rotation.

Training

Training will be designed to help employees understand:
- The premise of ergonomics is to fit the job to the person rather than making the person fit the job.
- Cumulative trauma or repetitive motion injuries.
- Early symptoms of ergonomically-related injuries.

Following the initial training in the program, the following must be implemented:
1. Conduct a work place analysis to determine the recognized ergonomic hazards.
2. Procedure to correct or control ergonomic hazards through engineering, work practices, and/or administrative controls.